Unsupervised Belief Representation Learning with Information-Theoretic Variational Graph Auto-Encoders

This paper develops a novel unsupervised algorithm for belief representation learning in polarized networks that (i) uncovers the latent dimensions of the underlying belief space and (ii) jointly embeds users and content items (that they interact with) into that space in a manner that facilitates a number of downstream tasks, such as stance detection, stance prediction, and ideology mapping. Inspired by total correlation in information theory, we propose the Information-Theoretic Variational Graph Auto-Encoder (InfoVGAE) that learns to project both users and content items (e.g., posts that represent user views) into an appropriate disentangled latent space. To better disentangle latent variables in that space, we develop a total correlation regularization module, a Proportional-Integral (PI) control module, and adopt rectified Gaussian distribution to ensure the orthogonality. The latent representation of users and content can then be used to quantify their ideological leaning and detect/predict their stances on issues. We evaluate the performance of the proposed InfoVGAE on three real-world datasets, of which two are collected from Twitter and one from U.S. Congress voting records. The evaluation results show that our model outperforms state-of-the-art unsupervised models by reducing 10.5% user clustering errors and achieving 12.1% higher F1 scores for stance separation of content items. In addition, InfoVGAE produces a comparable result with supervised models. We also discuss its performance on stance prediction and user ranking within ideological groups.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here