Unsupervised Co-Learning on G-Manifolds Across Irreducible Representations

NeurIPS 2019  ·  Yifeng Fan, Tingran Gao, Zhizhen Jane Zhao ·

We introduce a novel co-learning paradigm for manifolds naturally admitting an action of a transformation group $\mathcal{G}$, motivated by recent developments on learning a manifold from attached fibre bundle structures. We utilize a representation theoretic mechanism that canonically associates multiple independent vector bundles over a common base manifold, which provides multiple views for the geometry of the underlying manifold. The consistency across these fibre bundles provide a common base for performing unsupervised manifold co-learning through the redundancy created artificially across irreducible representations of the transformation group. We demonstrate the efficacy of our proposed algorithmic paradigm through drastically improved robust nearest neighbor identification in cryo-electron microscopy image analysis and the clustering accuracy in community detection.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here