Unsupervised Cross-Domain Word Representation Learning

Meaning of a word varies from one domain to another. Despite this important domain dependence in word semantics, existing word representation learning methods are bound to a single domain. Given a pair of \emph{source}-\emph{target} domains, we propose an unsupervised method for learning domain-specific word representations that accurately capture the domain-specific aspects of word semantics. First, we select a subset of frequent words that occur in both domains as \emph{pivots}. Next, we optimize an objective function that enforces two constraints: (a) for both source and target domain documents, pivots that appear in a document must accurately predict the co-occurring non-pivots, and (b) word representations learnt for pivots must be similar in the two domains. Moreover, we propose a method to perform domain adaptation using the learnt word representations. Our proposed method significantly outperforms competitive baselines including the state-of-the-art domain-insensitive word representations, and reports best sentiment classification accuracies for all domain-pairs in a benchmark dataset.

PDF Abstract IJCNLP 2015 PDF IJCNLP 2015 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here