Unsupervised Domain Adaptation by Optical Flow Augmentation in Semantic Segmentation

20 Nov 2019Oluwafemi Azeez

It is expensive to generate real-life image labels and there is a domain gap between real-life and simulated images, hence a model trained on the latter cannot adapt to the former. Solving this can totally eliminate the need for labeling real-life datasets completely... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet