Unsupervised Domain Adaptation for Zero-Shot Learning

ICCV 2015  ·  Elyor Kodirov, Tao Xiang, Zhen-Yong Fu, Shaogang Gong ·

Zero-shot learning (ZSL) can be considered as a special case of transfer learning where the source and target domains have different tasks/label spaces and the target domain is unlabelled, providing little guidance for the knowledge transfer. A ZSL method typically assumes that the two domains share a common semantic representation space, where a visual feature vector extracted from an image/video can be projected/embedded using a projection function... Existing approaches learn the projection function from the source domain and apply it without adaptation to the target domain. They are thus based on naive knowledge transfer and the learned projections are prone to the domain shift problem. In this paper a novel ZSL method is proposed based on unsupervised domain adaptation. Specifically, we formulate a novel regularised sparse coding framework which uses the target domain class labels' projections in the semantic space to regularise the learned target domain projection thus effectively overcoming the projection domain shift problem. Extensive experiments on four object and action recognition benchmark datasets show that the proposed ZSL method significantly outperforms the state-of-the-arts. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here