Unsupervised Evaluation for Question Answering with Transformers

It is challenging to automatically evaluate the answer of a QA model at inference time. Although many models provide confidence scores, and simple heuristics can go a long way towards indicating answer correctness, such measures are heavily dataset-dependent and are unlikely to generalize. In this work, we begin by investigating the hidden representations of questions, answers, and contexts in transformer-based QA architectures. We observe a consistent pattern in the answer representations, which we show can be used to automatically evaluate whether or not a predicted answer span is correct. Our method does not require any labeled data and outperforms strong heuristic baselines, across 2 datasets and 7 domains. We are able to predict whether or not a model's answer is correct with 91.37% accuracy on SQuAD, and 80.7% accuracy on SubjQA. We expect that this method will have broad applications, e.g., in the semi-automatic development of QA datasets

PDF Abstract EMNLP (BlackboxNLP) 2020 PDF EMNLP (BlackboxNLP) 2020 Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here