Unsupervised Geometric Disentanglement for Surfaces via CFAN-VAE

23 May 2020  ·  N. Joseph Tatro, Stefan C. Schonsheck, Rongjie Lai ·

Geometric disentanglement, the separation of latent codes for intrinsic (i.e. identity) and extrinsic(i.e. pose) geometry, is a prominent task for generative models of non-Euclidean data such as 3D deformable models. It provides greater interpretability of the latent space, and leads to more control in generation. This work introduces a mesh feature, the conformal factor and normal feature (CFAN),for use in mesh convolutional autoencoders. We further propose CFAN-VAE, a novel architecture that disentangles identity and pose using the CFAN feature. Requiring no label information on the identity or pose during training, CFAN-VAE achieves geometric disentanglement in an unsupervisedway. Our comprehensive experiments, including reconstruction, interpolation, generation, and identity/pose transfer, demonstrate CFAN-VAE achieves state-of-the-art performance on unsupervised geometric disentanglement. We also successfully detect a level of geometric disentanglement in mesh convolutional autoencoders that encode xyz-coordinates directly by registering its latent space to that of CFAN-VAE.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods