Unsupervised Homography Estimation with Coplanarity-Aware GAN

Estimating homography from an image pair is a fundamental problem in image alignment. Unsupervised learning methods have received increasing attention in this field due to their promising performance and label-free training. However, existing methods do not explicitly consider the problem of plane-induced parallax, which will make the predicted homography compromised on multiple planes. In this work, we propose a novel method HomoGAN to guide unsupervised homography estimation to focus on the dominant plane. First, a multi-scale transformer network is designed to predict homography from the feature pyramids of input images in a coarse-to-fine fashion. Moreover, we propose an unsupervised GAN to impose coplanarity constraint on the predicted homography, which is realized by using a generator to predict a mask of aligned regions, and then a discriminator to check if two masked feature maps are induced by a single homography. To validate the effectiveness of HomoGAN and its components, we conduct extensive experiments on a large-scale dataset, and the results show that our matching error is 22% lower than the previous SOTA method. Code is available at https://github.com/megvii-research/HomoGAN.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here