Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration

11 May 2018  ·  Adrian V. Dalca, Guha Balakrishnan, John Guttag, Mert R. Sabuncu ·

Traditional deformable registration techniques achieve impressive results and offer a rigorous theoretical treatment, but are computationally intensive since they solve an optimization problem for each image pair. Recently, learning-based methods have facilitated fast registration by learning spatial deformation functions. However, these approaches use restricted deformation models, require supervised labels, or do not guarantee a diffeomorphic (topology-preserving) registration. Furthermore, learning-based registration tools have not been derived from a probabilistic framework that can offer uncertainty estimates. In this paper, we present a probabilistic generative model and derive an unsupervised learning-based inference algorithm that makes use of recent developments in convolutional neural networks (CNNs). We demonstrate our method on a 3D brain registration task, and provide an empirical analysis of the algorithm. Our approach results in state of the art accuracy and very fast runtimes, while providing diffeomorphic guarantees and uncertainty estimates. Our implementation is available online at http://voxelmorph.csail.mit.edu .

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here