Paper

Unsupervised Learning of Explainable Parse Trees for Improved Generalisation

Recursive neural networks (RvNN) have been shown useful for learning sentence representations and helped achieve competitive performance on several natural language inference tasks. However, recent RvNN-based models fail to learn simple grammar and meaningful semantics in their intermediate tree representation. In this work, we propose an attention mechanism over Tree-LSTMs to learn more meaningful and explainable parse tree structures. We also demonstrate the superior performance of our proposed model on natural language inference, semantic relatedness, and sentiment analysis tasks and compare them with other state-of-the-art RvNN based methods. Further, we present a detailed qualitative and quantitative analysis of the learned parse trees and show that the discovered linguistic structures are more explainable, semantically meaningful, and grammatically correct than recent approaches. The source code of the paper is available at https://github.com/atul04/Explainable-Latent-Structures-Using-Attention.

Results in Papers With Code
(↓ scroll down to see all results)