Unsupervised Learning of Optical Flow with Deep Feature Similarity

ECCV 2020  ·  Woobin Im, Tae-Kyun Kim, Sung-Eui Yoon ·

Deep unsupervised learning for optical flow has been proposed, where the loss measures image similarity with the warping function parameterized by estimated flow. The census transform, instead of image pixel values, is often used for the image similarity. In this work, rather than the handcrafted features i.e. census or pixel values, we propose to use deep self-supervised features with a novel similarity measure, which fuses multi-layer similarities. With the fused similarity, our network better learns flow by minimizing our proposed feature separation loss. The proposed method is a polarizing scheme, resulting in a more discriminative similarity map. In the process, the features are also updated to get high similarity for matching pairs and low for uncertain pairs, given estimated flow. We evaluate our method on FlyingChairs, MPI Sintel, and KITTI benchmarks. In quantitative and qualitative comparisons, our method effectively improves the state-of-the-art techniques.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here