Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features

NAACL 2018 Matteo PagliardiniPrakhar GuptaMartin Jaggi

The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences... (read more)

PDF Abstract NAACL 2018 PDF NAACL 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet