Unsupervised Learning of Spoken Language with Visual Context

NeurIPS 2016 David HarwathAntonio TorralbaJames Glass

Humans learn to speak before they can read or write, so why can’t computers do the same? In this paper, we present a deep neural network model capable of rudimentary spoken language acquisition using untranscribed audio training data, whose only supervision comes in the form of contextually relevant visual images... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet