Unsupervised Object Discovery and Segmentation of RGBD-images

In this paper we introduce a system for unsupervised object discovery and segmentation of RGBD-images. The system models the sensor noise directly from data, allowing accurate segmentation without sensor specific hand tuning of measurement noise models making use of the recently introduced Statistical Inlier Estimation (SIE) method... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet