Unsupervised Place Discovery for Place-Specific Change Classifier

7 Jun 2017  ·  Fei Xiaoxiao, Tanaka Kanji ·

In this study, we address the problem of supervised change detection for robotic map learning applications, in which the aim is to train a place-specific change classifier (e.g., support vector machine (SVM)) to predict changes from a robot's view image. An open question is the manner in which to partition a robot's workspace into places (e.g., SVMs) to maximize the overall performance of change classifiers. This is a chicken-or-egg problem: if we have a well-trained change classifier, partitioning the robot's workspace into places is rather easy. However, training a change classifier requires a set of place-specific training data. In this study, we address this novel problem, which we term unsupervised place discovery. In addition, we present a solution powered by convolutional-feature-based visual place recognition, and validate our approach by applying it to two place-specific change classifiers, namely, nuisance and anomaly predictors.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here