Unsupervised Place Discovery for Place-Specific Change Classifier

7 Jun 2017Fei XiaoxiaoTanaka Kanji

In this study, we address the problem of supervised change detection for robotic map learning applications, in which the aim is to train a place-specific change classifier (e.g., support vector machine (SVM)) to predict changes from a robot's view image. An open question is the manner in which to partition a robot's workspace into places (e.g., SVMs) to maximize the overall performance of change classifiers... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.