Unsupervised Representation Learning of DNA Sequences

7 Jun 2019  ·  Vishal Agarwal, N Jayanth Kumar Reddy, Ashish Anand ·

Recently several deep learning models have been used for DNA sequence based classification tasks. Often such tasks require long and variable length DNA sequences in the input. In this work, we use a sequence-to-sequence autoencoder model to learn a latent representation of a fixed dimension for long and variable length DNA sequences in an unsupervised manner. We evaluate both quantitatively and qualitatively the learned latent representation for a supervised task of splice site classification. The quantitative evaluation is done under two different settings. Our experiments show that these representations can be used as features or priors in closely related tasks such as splice site classification. Further, in our qualitative analysis, we use a model attribution technique Integrated Gradients to infer significant sequence signatures influencing the classification accuracy. We show the identified splice signatures resemble well with the existing knowledge.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods