SemiEpi: Self-driving, Closed-loop Multi-Step Growth of Semiconductor Heterostructures Guided by Machine Learning
The semiconductor industry has prioritized automating repetitive tasks through closed-loop, self-driving experimentation, accelerating the optimization of complex multi-step processes. The emergence of machine learning (ML) has ushered in self-driving processes with minimal human intervention. This work introduces SemiEpi, a self-driving platform designed to execute molecular beam epitaxy (MBE) growth of semiconductor heterostructures through multi-step processes, in-situ monitoring, and on-the-fly feedback control. By integrating standard reactor, parameter initialization, and multiple ML models, SemiEpi identifies optimal initial conditions and proposes experiments for multi-step heterostructure growth, eliminating the need for extensive expertise in MBE processes. SemiEpi initializes material growth parameters tailored to specific material characteristics, and fine-tuned control over the growth process is then achieved through ML optimization. We optimize the growth for InAs quantum dots (QDs) heterostructures to showcase the power of SemiEpi, achieving a QD density of 5E10/cm2, 1.6-fold increased photoluminescence (PL) intensity and reduced full width at half maximum (FWHM) of 29.13 meV. This work highlights the potential of closed-loop, ML-guided systems to address challenges in multi-step growth. Our method is critical to achieve repeatable materials growth using commercially scalable tools. Furthermore, our strategy facilitates developing a hardware-independent process and enhancing process repeatability and stability, even without exhaustive knowledge of growth parameters.
PDF Abstract