Unsupervised Typography Transfer

7 Feb 2018 Hanfei Sun Yiming Luo Ziang Lu

Traditional methods in Chinese typography synthesis view characters as an assembly of radicals and strokes, but they rely on manual definition of the key points, which is still time-costing. Some recent work on computer vision proposes a brand new approach: to treat every Chinese character as an independent and inseparable image, so the pre-processing and post-processing of each character can be avoided... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet