US-Rule: Discovering Utility-driven Sequential Rules

29 Nov 2021  ·  Gengsen Huang, Wensheng Gan, Jian Weng, Philip S. Yu ·

Utility-driven mining is an important task in data science and has many applications in real life. High utility sequential pattern mining (HUSPM) is one kind of utility-driven mining. HUSPM aims to discover all sequential patterns with high utility. However, the existing algorithms of HUSPM can not provide an accurate probability to deal with some scenarios for prediction or recommendation. High-utility sequential rule mining (HUSRM) was proposed to discover all sequential rules with high utility and high confidence. There is only one algorithm proposed for HUSRM, which is not enough efficient. In this paper, we propose a faster algorithm, called US-Rule, to efficiently mine high-utility sequential rules. It utilizes rule estimated utility co-occurrence pruning strategy (REUCP) to avoid meaningless computation. To improve the efficiency on dense and long sequence datasets, four tighter upper bounds (LEEU, REEU, LERSU, RERSU) and their corresponding pruning strategies (LEEUP, REEUP, LERSUP, RERSUP) are proposed. Besides, US-Rule proposes rule estimated utility recomputing pruning strategy (REURP) to deal with sparse datasets. At last, a large number of experiments on different datasets compared to the state-of-the-art algorithm demonstrate that US-Rule can achieve better performance in terms of execution time, memory consumption and scalability.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here