Using Big Data to Enhance the Bosch Production Line Performance: A Kaggle Challenge

29 Dec 2016  ·  Ankita Mangal, Nishant Kumar ·

This paper describes our approach to the Bosch production line performance challenge run by Kaggle.com. Maximizing the production yield is at the heart of the manufacturing industry. At the Bosch assembly line, data is recorded for products as they progress through each stage. Data science methods are applied to this huge data repository consisting records of tests and measurements made for each component along the assembly line to predict internal failures. We found that it is possible to train a model that predicts which parts are most likely to fail. Thus a smarter failure detection system can be built and the parts tagged likely to fail can be salvaged to decrease operating costs and increase the profit margins.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here