Using Conditional Generative Adversarial Networks to Generate Ground-Level Views From Overhead Imagery

19 Feb 2019  ·  Xueqing Deng, Yi Zhu, Shawn Newsam ·

This paper develops a deep-learning framework to synthesize a ground-level view of a location given an overhead image. We propose a novel conditional generative adversarial network (cGAN) in which the trained generator generates realistic looking and representative ground-level images using overhead imagery as auxiliary information. The generator is an encoder-decoder network which allows us to compare low- and high-level features as well as their concatenation for encoding the overhead imagery. We also demonstrate how our framework can be used to perform land cover classification by modifying the trained cGAN to extract features from overhead imagery. This is interesting because, although we are using this modified cGAN as a feature extractor for overhead imagery, it incorporates knowledge of how locations look from the ground.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here