Using Gaussian Measures for Efficient Constraint Based Clustering

12 Nov 2014  ·  Chandrima Sarkar, Atanu Roy ·

In this paper we present a novel iterative multiphase clustering technique for efficiently clustering high dimensional data points. For this purpose we implement clustering feature (CF) tree on a real data set and a Gaussian density distribution constraint on the resultant CF tree. The post processing by the application of Gaussian density distribution function on the micro-clusters leads to refinement of the previously formed clusters thus improving their quality. This algorithm also succeeds in overcoming the inherent drawbacks of conventional hierarchical methods of clustering like inability to undo the change made to the dendogram of the data points. Moreover, the constraint measure applied in the algorithm makes this clustering technique suitable for need driven data analysis. We provide veracity of our claim by evaluating our algorithm with other similar clustering algorithms. Introduction

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here