Using Graphs of Classifiers to Impose Declarative Constraints on Semi-supervised Learning

5 Mar 2017  ·  Lidong Bing, William W. Cohen, Bhuwan Dhingra ·

We propose a general approach to modeling semi-supervised learning (SSL) algorithms. Specifically, we present a declarative language for modeling both traditional supervised classification tasks and many SSL heuristics, including both well-known heuristics such as co-training and novel domain-specific heuristics. In addition to representing individual SSL heuristics, we show that multiple heuristics can be automatically combined using Bayesian optimization methods. We experiment with two classes of tasks, link-based text classification and relation extraction. We show modest improvements on well-studied link-based classification benchmarks, and state-of-the-art results on relation-extraction tasks for two realistic domains.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here