Local Convolutions Cause an Implicit Bias towards High Frequency Adversarial Examples

19 Jun 2020  ·  Josue Ortega Caro, Yilong Ju, Ryan Pyle, Sourav Dey, Wieland Brendel, Fabio Anselmi, Ankit Patel ·

Adversarial Attacks are still a significant challenge for neural networks. Recent work has shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear full-width convolutional models, we hypothesize that the local (i.e. bounded-width) convolutional operations commonly used in current neural networks are implicitly biased to learn high frequency features, and that this is one of the root causes of high frequency adversarial examples. To test this hypothesis, we analyzed the impact of different choices of linear and nonlinear architectures on the implicit bias of the learned features and the adversarial perturbations, in both spatial and frequency domains. We find that the high-frequency adversarial perturbations are critically dependent on the convolution operation because the spatially-limited nature of local convolutions induces an implicit bias towards high frequency features. The explanation for the latter involves the Fourier Uncertainty Principle: a spatially-limited (local in the space domain) filter cannot also be frequency-limited (local in the frequency domain). Furthermore, using larger convolution kernel sizes or avoiding convolutions (e.g. by using Vision Transformers architecture) significantly reduces this high frequency bias, but not the overall susceptibility to attacks. Looking forward, our work strongly suggests that understanding and controlling the implicit bias of architectures will be essential for achieving adversarial robustness.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods