Using Natural Sentence Prompts for Understanding Biases in Language Models

NAACL 2022  ·  Sarah Alnegheimish, Alicia Guo, Yi Sun ·

Evaluation of biases in language models is often limited to synthetically generated datasets. This dependence traces back to the need of prompt-style dataset to trigger specific behaviors of language models. In this paper, we address this gap by creating a prompt dataset with respect to occupations collected from real-world natural sentences present in Wikipedia.We aim to understand the differences between using template-based prompts and natural sentence prompts when studying gender-occupation biases in language models. We find bias evaluations are very sensitiveto the design choices of template prompts, and we propose using natural sentence prompts as a way of more systematically using real-world sentences to move away from design decisions that may bias the results.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here