Utilizing UNet for the future traffic map prediction task Traffic4cast challenge 2020

24 Nov 2020  ·  Sungbin Choi ·

This paper describes our UNet based experiments on the Traffic4cast challenge 2020. Similar to the Traffic4cast challenge 2019, the task is to predict traffic flow volume, direction and speed on a high resolution map of three large cities worldwide. We mainly experimented with UNet based deep convolutional networks with various compositions of densely connected convolution layers, average pooling layers and max pooling layers. Three base UNet model types are tried and predictions are combined by averaging prediction scores or taking median value. Our method achieved best performance in this years newly built challenge dataset.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.