Utterance-level Aggregation For Speaker Recognition In The Wild

None 2019 Weidi XieArsha NagraniJoon Son ChungAndrew Zisserman

The objective of this paper is speaker recognition "in the wild"-where utterances may be of variable length and also contain irrelevant signals. Crucial elements in the design of deep networks for this task are the type of trunk (frame level) network, and the method of temporal aggregation... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet