UTTS: Unsupervised TTS with Conditional Disentangled Sequential Variational Auto-encoder

6 Jun 2022  ·  Jiachen Lian, Chunlei Zhang, Gopala Krishna Anumanchipalli, Dong Yu ·

In this paper, we propose a novel unsupervised text-to-speech (UTTS) framework which does not require text-audio pairs for the TTS acoustic modeling (AM). UTTS is a multi-speaker speech synthesizer that supports zero-shot voice cloning, it is developed from a perspective of disentangled speech representation learning. The framework offers a flexible choice of a speaker's duration model, timbre feature (identity) and content for TTS inference. We leverage recent advancements in self-supervised speech representation learning as well as speech synthesis front-end techniques for system development. Specifically, we employ our recently formulated Conditional Disentangled Sequential Variational Auto-encoder (C-DSVAE) as the backbone UTTS AM, which offers well-structured content representations given unsupervised alignment (UA) as condition during training. For UTTS inference, we utilize a lexicon to map input text to the phoneme sequence, which is expanded to the frame-level forced alignment (FA) with a speaker-dependent duration model. Then, we develop an alignment mapping module that converts FA to UA. Finally, the C-DSVAE, serving as the self-supervised TTS AM, takes the predicted UA and a target speaker embedding to generate the mel spectrogram, which is ultimately converted to waveform with a neural vocoder. We show how our method enables speech synthesis without using a paired TTS corpus. Experiments demonstrate that UTTS can synthesize speech of high naturalness and intelligibility measured by human and objective evaluations. Audio samples are available at our demo page https://neurtts.github.io/utts_demo.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.