UZH@SMM4H: System Descriptions
Our team at the University of Z{\"u}rich participated in the first 3 of the 4 sub-tasks at the Social Media Mining for Health Applications (SMM4H) shared task. We experimented with different approaches for text classification, namely traditional feature-based classifiers (Logistic Regression and Support Vector Machines), shallow neural networks, RCNNs, and CNNs. This system description paper provides details regarding the different system architectures and the achieved results.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here