Value Functions for Depth-Limited Solving in Zero-Sum Imperfect-Information Games

31 May 2019  ·  Vojtěch Kovařík, Dominik Seitz, Viliam Lisý, Jan Rudolf, Shuo Sun, Karel Ha ·

We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games are value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here