Variable Sampling MPC via Differentiable Time-Warping Function

20 Jan 2023  ·  Zehui Lu, Shaoshuai Mou ·

Designing control inputs for a system that involves dynamical responses in multiple timescales is nontrivial. This paper proposes a parameterized time-warping function to enable a non-uniformly sampling along a prediction horizon given some parameters. The horizon should capture the responses under faster dynamics in the near future and preview the impact from slower dynamics in the distant future. Then a variable sampling MPC (VS-MPC) strategy is proposed to jointly determine optimal control and sampling parameters at each timestamp. VS-MPC adapts how it samples along the horizon and determines optimal control accordingly at each timestamp without offline tuning or trial and error. A numerical example of a wind farm battery energy storage system is also provided to demonstrate that VS-MPC outperforms the uniform sampling MPC.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here