Variance-Reduced and Projection-Free Stochastic Optimization

5 Feb 2016  ·  Elad Hazan, Haipeng Luo ·

The Frank-Wolfe optimization algorithm has recently regained popularity for machine learning applications due to its projection-free property and its ability to handle structured constraints. However, in the stochastic learning setting, it is still relatively understudied compared to the gradient descent counterpart. In this work, leveraging a recent variance reduction technique, we propose two stochastic Frank-Wolfe variants which substantially improve previous results in terms of the number of stochastic gradient evaluations needed to achieve $1-\epsilon$ accuracy. For example, we improve from $O(\frac{1}{\epsilon})$ to $O(\ln\frac{1}{\epsilon})$ if the objective function is smooth and strongly convex, and from $O(\frac{1}{\epsilon^2})$ to $O(\frac{1}{\epsilon^{1.5}})$ if the objective function is smooth and Lipschitz. The theoretical improvement is also observed in experiments on real-world datasets for a multiclass classification application.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here