Variance-Reduced Stochastic Learning under Random Reshuffling

4 Aug 2017  ·  Bicheng Ying, Kun Yuan, Ali H. Sayed ·

Several useful variance-reduced stochastic gradient algorithms, such as SVRG, SAGA, Finito, and SAG, have been proposed to minimize empirical risks with linear convergence properties to the exact minimizer. The existing convergence results assume uniform data sampling with replacement. However, it has been observed in related works that random reshuffling can deliver superior performance over uniform sampling and, yet, no formal proofs or guarantees of exact convergence exist for variance-reduced algorithms under random reshuffling. This paper makes two contributions. First, it resolves this open issue and provides the first theoretical guarantee of linear convergence under random reshuffling for SAGA; the argument is also adaptable to other variance-reduced algorithms. Second, under random reshuffling, the paper proposes a new amortized variance-reduced gradient (AVRG) algorithm with constant storage requirements compared to SAGA and with balanced gradient computations compared to SVRG. AVRG is also shown analytically to converge linearly.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods