Variance Reduction for Evolution Strategies via Structured Control Variates

29 May 2019  ·  Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir ·

Evolution Strategies (ES) are a powerful class of blackbox optimization techniques that recently became a competitive alternative to state-of-the-art policy gradient (PG) algorithms for reinforcement learning (RL). We propose a new method for improving accuracy of the ES algorithms, that as opposed to recent approaches utilizing only Monte Carlo structure of the gradient estimator, takes advantage of the underlying MDP structure to reduce the variance. We observe that the gradient estimator of the ES objective can be alternatively computed using reparametrization and PG estimators, which leads to new control variate techniques for gradient estimation in ES optimization. We provide theoretical insights and show through extensive experiments that this RL-specific variance reduction approach outperforms general purpose variance reduction methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here