Variational Bayesian inference for linear and logistic regression

21 Oct 2013 Jan Drugowitsch

The article describe the model, derivation, and implementation of variational Bayesian inference for linear and logistic regression, both with and without automatic relevance determination. It has the dual function of acting as a tutorial for the derivation of variational Bayesian inference for simple models, as well as documenting, and providing brief examples for the MATLAB/Octave functions that implement this inference... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet