Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning

17 Oct 2020  ·  Chenjia Bai, Peng Liu, Kaiyu Liu, Lingxiao Wang, Yingnan Zhao, Lei Han ·

Efficient exploration remains a challenging problem in reinforcement learning, especially for tasks where extrinsic rewards from environments are sparse or even totally disregarded. Significant advances based on intrinsic motivation show promising results in simple environments but often get stuck in environments with multimodal and stochastic dynamics. In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality and stochasticity. We consider the environmental state-action transition as a conditional generative process by generating the next-state prediction under the condition of the current state, action, and latent variable, which provides a better understanding of the dynamics and leads a better performance in exploration. We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration, which allows the agent to learn skills by self-supervised exploration without observing extrinsic rewards. We evaluate the proposed method on several image-based simulation tasks and a real robotic manipulating task. Our method outperforms several state-of-the-art environment model-based exploration approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here