Variational Fast Forwarding for Quantum Simulation Beyond the Coherence Time

9 Oct 2019  ·  Cristina Cirstoiu, Zoe Holmes, Joseph Iosue, Lukasz Cincio, Patrick J. Coles, Andrew Sornborger ·

Trotterization-based, iterative approaches to quantum simulation are restricted to simulation times less than the coherence time of the quantum computer, which limits their utility in the near term. Here, we present a hybrid quantum-classical algorithm, called Variational Fast Forwarding (VFF), for decreasing the quantum circuit depth of quantum simulations. VFF seeks an approximate diagonalization of a short-time simulation to enable longer-time simulations using a constant number of gates. Our error analysis provides two results: (1) the simulation error of VFF scales at worst linearly in the fast-forwarded simulation time, and (2) our cost function's operational meaning as an upper bound on average-case simulation error provides a natural termination condition for VFF. We implement VFF for the Hubbard, Ising, and Heisenberg models on a simulator. Finally, we implement VFF on Rigetti's quantum computer to show simulation beyond the coherence time.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics