Minimizing $f$-Divergences by Interpolating Velocity Fields

24 May 2023  ·  Song Liu, Jiahao Yu, Jack Simons, Mingxuan Yi, Mark Beaumont ·

Many machine learning problems can be seen as approximating a \textit{target} distribution using a \textit{particle} distribution by minimizing their statistical discrepancy. Wasserstein Gradient Flow can move particles along a path that minimizes the $f$-divergence between the target and particle distributions. To move particles, we need to calculate the corresponding velocity fields derived from a density ratio function between these two distributions. Previous works estimated such density ratio functions and then differentiated the estimated ratios. These approaches may suffer from overfitting, leading to a less accurate estimate of the velocity fields. Inspired by non-parametric curve fitting, we directly estimate these velocity fields using interpolation techniques. We prove that our estimators are consistent under mild conditions. We validate their effectiveness using novel applications on domain adaptation and missing data imputation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here