Variational Quantum Boltzmann Machines

10 Jun 2020  ·  Zoufal Christa, Lucchi Aurélien, Woerner Stefan ·

This work presents a novel realization approach to Quantum Boltzmann Machines (QBMs). The preparation of the required Gibbs states, as well as the evaluation of the loss function's analytic gradient is based on Variational Quantum Imaginary Time Evolution, a technique that is typically used for ground state computation. In contrast to existing methods, this implementation facilitates near-term compatible QBM training with gradients of the actual loss function for arbitrary parameterized Hamiltonians which do not necessarily have to be fully-visible but may also include hidden units. The variational Gibbs state approximation is demonstrated with numerical simulations and experiments run on real quantum hardware provided by IBM Quantum. Furthermore, we illustrate the application of this variational QBM approach to generative and discriminative learning tasks using numerical simulation.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics