Vec2Gloss: definition modeling leveraging contextualized vectors with Wordnet gloss

29 May 2023  ·  Yu-Hsiang Tseng, Mao-Chang Ku, Wei-Ling Chen, Yu-Lin Chang, Shu-Kai Hsieh ·

Contextualized embeddings are proven to be powerful tools in multiple NLP tasks. Nonetheless, challenges regarding their interpretability and capability to represent lexical semantics still remain. In this paper, we propose that the task of definition modeling, which aims to generate the human-readable definition of the word, provides a route to evaluate or understand the high dimensional semantic vectors. We propose a `Vec2Gloss' model, which produces the gloss from the target word's contextualized embeddings. The generated glosses of this study are made possible by the systematic gloss patterns provided by Chinese Wordnet. We devise two dependency indices to measure the semantic and contextual dependency, which are used to analyze the generated texts in gloss and token levels. Our results indicate that the proposed `Vec2Gloss' model opens a new perspective to the lexical-semantic applications of contextualized embeddings.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here