Scalar Quantization as Sparse Least Square Optimization

1 Mar 2018  ·  Chen Wang, Xiaomei Yang, Shaomin Fei, Kai Zhou, Xiao-Feng Gong, Miao Du, Ruisen Luo ·

Quantization can be used to form new vectors/matrices with shared values close to the original. In recent years, the popularity of scalar quantization for value-sharing applications has been soaring as it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-based quantization techniques, while being well-developed, have multiple drawbacks including the dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for a large number of clusters. To overcome these problems, in this paper, the problem of scalar quantization is examined from a new perspective, namely sparse least square optimization. Specifically, inspired by the property of sparse least square regression, several quantization algorithms based on $l_1$ least square are proposed. In addition, similar schemes with $l_1 + l_2$ and $l_0$ regularization are proposed. Furthermore, to compute quantization results with a given amount of values/clusters, this paper designed an iterative method and a clustering-based method, and both of them are built on sparse least square. The paper shows that the latter method is mathematically equivalent to an improved version of k-means clustering-based quantization algorithm, although the two algorithms originated from different intuitions. The algorithms proposed were tested with three types of data and their computational performances, including information loss, time consumption, and the distribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new perspective to probe the area of quantization, and the algorithms proposed can outperform existing methods especially under some bit-width reduction scenarios, when the required post-quantization resolution (number of values) is not significantly lower than the original number.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here