Vectors of Locally Aggregated Centers for Compact Video Representation

13 Sep 2015  ·  Alhabib Abbas, Nikos Deligiannis, Yiannis Andreopoulos ·

We propose a novel vector aggregation technique for compact video representation, with application in accurate similarity detection within large video datasets. The current state-of-the-art in visual search is formed by the vector of locally aggregated descriptors (VLAD) of Jegou et... al. VLAD generates compact video representations based on scale-invariant feature transform (SIFT) vectors (extracted per frame) and local feature centers computed over a training set. With the aim to increase robustness to visual distortions, we propose a new approach that operates at a coarser level in the feature representation. We create vectors of locally aggregated centers (VLAC) by first clustering SIFT features to obtain local feature centers (LFCs) and then encoding the latter with respect to given centers of local feature centers (CLFCs), extracted from a training set. The sum-of-differences between the LFCs and the CLFCs are aggregated to generate an extremely-compact video description used for accurate video segment similarity detection. Experimentation using a video dataset, comprising more than 1000 minutes of content from the Open Video Project, shows that VLAC obtains substantial gains in terms of mean Average Precision (mAP) against VLAD and the hyper-pooling method of Douze et. al., under the same compaction factor and the same set of distortions. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here