Vehicular Networks for Combating a Worldwide Pandemic: Preventing the Spread of COVID-19

As a worldwide pandemic, the coronavirus disease-19 (COVID-19) has caused serious restrictions in people's social life, along with the loss of lives, the collapse of economies and the disruption of humanitarian aids. Despite the advance of technological developments, we, as researchers, have witnessed that several issues need further investigation for a better response to a pandemic outbreak. Therefore, researchers recently started developing ideas to stop or at least reduce the spread of the pandemic. While there have been some prior works on wireless networks for combating a pandemic scenario, vehicular networks and their potential bottlenecks have not yet been fully examined. Furthermore, the vehicular scenarios can be identified as the locations, where the social distancing is mostly violated. With this motivation, this article provides an extensive discussion on vehicular networking for combating a pandemic. We provide the major applications of vehicular networking for combating COVID-19 in public transportation, in-vehicle diagnosis, border patrol and social distance monitoring. Next, we identify the unique characteristics of the collected data in terms of privacy, flexibility and coverage, then highlight corresponding future directions in privacy preservation, resource allocation, data caching and data routing. We believe that this work paves the way for the development of new products and algorithms that can facilitate the social life and help controlling the spread of the pandemic.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here