Verification Code Recognition Based on Active and Deep Learning

12 Feb 2019  ·  Dongliang Xu, Bailing Wang, XiaoJiang Du, Xiaoyan Zhu, zhitao Guan, Xiaoyan Yu, Jingyu Liu ·

A verification code is an automated test method used to distinguish between humans and computers. Humans can easily identify verification codes, whereas machines cannot. With the development of convolutional neural networks, automatically recognizing a verification code is now possible for machines. However, the advantages of convolutional neural networks depend on the data used by the training classifier, particularly the size of the training set. Therefore, identifying a verification code using a convolutional neural network is difficult when training data are insufficient. This study proposes an active and deep learning strategy to obtain new training data on a special verification code set without manual intervention. A feature learning model for a scene with less training data is presented in this work, and the verification code is identified by the designed convolutional neural network. Experiments show that the method can considerably improve the recognition accuracy of a neural network when the amount of initial training data is small.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here