Verification of Initial-State Opacity for Switched Systems: A Compositional Approach

30 Jun 2020  ·  Liu Siyuan, Swikir Abdalla, Zamani Majid ·

The security in information-flow has become a major concern for cyber-physical systems (CPSs). In this work, we focus on the analysis of an information-flow security property, called opacity. Opacity characterizes the plausible deniability of a system's secret in the presence of a malicious outside intruder. We propose a methodology of checking a notion of opacity, called approximate initial-state opacity, for networks of discrete-time switched systems. Our framework relies on compositional constructions of finite abstractions for networks of switched systems and their so-called approximate initial-state opacity-preserving simulation functions (InitSOPSFs). Those functions characterize how close concrete networks and their finite abstractions are in terms of the satisfaction of approximate initial-state opacity. We show that such InitSOPSFs can be obtained compositionally by assuming some small-gain type conditions and composing so-called local InitSOPSFs constructed for each subsystem separately. Additionally, assuming certain stability property of switched systems, we also provide a technique on constructing their finite abstractions together with the corresponding local InitSOPSFs. Finally, we illustrate the effectiveness of our results through an example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here