Vertical GaN Diode BV Maximization through Rapid TCAD Simulation and ML-enabled Surrogate Model

18 Jul 2022  ·  Albert Lu, Jordan Marshall, Yifan Wang, Ming Xiao, Yuhao Zhang, Hiu Yung Wong ·

In this paper, two methodologies are used to speed up the maximization of the breakdown volt-age (BV) of a vertical GaN diode that has a theoretical maximum BV of ~2100V. Firstly, we demonstrated a 5X faster accurate simulation method in Technology Computer-Aided-Design (TCAD). This allows us to find 50% more numbers of high BV (>1400V) designs at a given simulation time. Secondly, a machine learning (ML) model is developed using TCAD-generated data and used as a surrogate model for differential evolution optimization. It can inversely design an out-of-the-training-range structure with BV as high as 1887V (89% of the ideal case) compared to ~1100V designed with human domain expertise.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods