View-volume Network for Semantic Scene Completion from a Single Depth Image

14 Jun 2018  ·  Yu-Xiao Guo, Xin Tong ·

We introduce a View-Volume convolutional neural network (VVNet) for inferring the occupancy and semantic labels of a volumetric 3D scene from a single depth image. The VVNet concatenates a 2D view CNN and a 3D volume CNN with a differentiable projection layer. Given a single RGBD image, our method extracts the detailed geometric features from the input depth image with a 2D view CNN and then projects the features into a 3D volume according to the input depth map via a projection layer. After that, we learn the 3D context information of the scene with a 3D volume CNN for computing the result volumetric occupancy and semantic labels. With combined 2D and 3D representations, the VVNet efficiently reduces the computational cost, enables feature extraction from multi-channel high resolution inputs, and thus significantly improves the result accuracy. We validate our method and demonstrate its efficiency and effectiveness on both synthetic SUNCG and real NYU dataset.

PDF Abstract
No code implementations yet. Submit your code now


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
3D Semantic Scene Completion NYUv2 VVNet mIoU 29.3 # 20


No methods listed for this paper. Add relevant methods here