Vision-and-Language Pretraining

5 Jul 2022  ·  Thong Nguyen, Cong-Duy Nguyen, Xiaobao Wu, Anh Tuan Luu ·

With the burgeoning amount of data of image-text pairs and diversity of Vision-and-Language (V&L) tasks, scholars have introduced an abundance of deep learning models in this research domain. Furthermore, in recent years, transfer learning has also shown tremendous success in Computer Vision for tasks such as Image Classification, Object Detection, etc., and in Natural Language Processing for Question Answering, Machine Translation, etc. Inheriting the spirit of Transfer Learning, research works in V&L have devised multiple pretraining techniques on large-scale datasets in order to enhance the performance of downstream tasks. The aim of this article is to provide a comprehensive revision of contemporary V&L pretraining models. In particular, we categorize and delineate pretraining approaches, along with the summary of state-of-the-art vision-and-language pre-trained models. Moreover, a list of training datasets and downstream tasks is supplied to further polish the perspective on V&L pretraining. Lastly, we decided to take a further step to discuss numerous directions for future research.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here