Visiting the Invisible: Layer-by-Layer Completed Scene Decomposition

12 Apr 2021  ·  Chuanxia Zheng, Duy-Son Dao, Guoxian Song, Tat-Jen Cham, Jianfei Cai ·

Existing scene understanding systems mainly focus on recognizing the visible parts of a scene, ignoring the intact appearance of physical objects in the real-world. Concurrently, image completion has aimed to create plausible appearance for the invisible regions, but requires a manual mask as input. In this work, we propose a higher-level scene understanding system to tackle both visible and invisible parts of objects and backgrounds in a given scene. Particularly, we built a system to decompose a scene into individual objects, infer their underlying occlusion relationships, and even automatically learn which parts of the objects are occluded that need to be completed. In order to disentangle the occluded relationships of all objects in a complex scene, we use the fact that the front object without being occluded is easy to be identified, detected, and segmented. Our system interleaves the two tasks of instance segmentation and scene completion through multiple iterations, solving for objects layer-by-layer. We first provide a thorough experiment using a new realistically rendered dataset with ground-truths for all invisible regions. To bridge the domain gap to real imagery where ground-truths are unavailable, we then train another model with the pseudo-ground-truths generated from our trained synthesis model. We demonstrate results on a wide variety of datasets and show significant improvement over the state-of-the-art.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here