Visual Goal-Step Inference using wikiHow

Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.

PDF Abstract EMNLP 2021 PDF EMNLP 2021 Abstract


Introduced in the Paper:


Used in the Paper:

HowTo100M COIN

Results from the Paper

Task Dataset Model Metric Name Metric Value Global Rank Benchmark
VGSI wikiHow-image Triplet Network Accuracy 0.7494 # 1